
OTiC FILE{Z ' ,

LNear Real-Time CSG Rendering using Treeo0 Normalization and Geometric Pruning

TR88-006
1988

Jack Goldfeather, Steven Molnar,
Greg Turk, and Henry Fuchs

DTIC
S ELECTE

NOV 18 1988 .

Cr-H

The University of North Carolina at Chapel Hill
Department of Computer Science
Sitterson Hall, 083A
Chapel Hill, NC 27599-3175

ticpublic,r o lemi.;
.U n:I .. , -5

UNC is an Equal Opportunity/Affirmative Action Ins~titut ion.

Near Real-Time CSG Rendering using
Tree Normalization and Geometric Pruning

Jack Goldfeather, Steven Molnar, Greg Turk and Henry Fuchs

University of North Carolina
Chapel Hill, NC 27514

11 January 1988(
Abstract

9 Described is a set of algorithms for efficiently rendering a CSG-defined object directly into a

frame buffer without converting first to a boundary representation. The method requires only

that the frame buffer contain sufficient memory to hold two color values, two z values, and three

one-bit flags. The algorithm first converts the CSG tree to a normalized form that is analogous to

the sum-of-products form for boolean switching functions. Expanding on result4 eported

---it E introducehere 1) an improved algorithm for converting a CSG expression to

sum-of-products form, 2) a technique for minimizing the tree using- don't care; _conditions

based on geometry, 3) the dynamic interleaving of the above two algorithms, allowing very

efficient rendering for most CSG objects, 4) a method for extending the technique to non-convex

primitives, and 5) an implementation of these ideas in an interactive CSG design system on Pixel-

planes 4. In this system the designer directly manipulates the CSG structure while continuously

viewing the color rendering of the object under design. -%-believe thatow aigorithms will

attain similar speeds on many of the next generation high-performance graphics systems that

have frame buffers with many bits per pixel. V' - -

'Jack Goldleather is professor of mathematics at Carleton College, Northfield, Minnesota

. mss ll = liiiiill i gl~i m i i -- "1

Figure 1: Consecutive frames during an editing session (0.142 seconds per frame)

1 Introduction

A serious bottleneck in using Constructive Solid Geometry (CSG) to desga 3D objects is the

time required to generate shaded images (RR86](For86]. Although at lowa ae team has proposed

and is now building specialized hardware for rapid rendering of CSG-deined objects [KE84], we

know of no system today, other than the one we present in this paper, that can render non-trivial

CSG-defined objects in near real. time.

1.1 Background

Three general methods have been proposed for fast CSG displays: 1) conversion to boundary-

representation, 2) scan-line algorithms, and 3) depth-buffering algorithms.

Conversion to boundary representation (BREP) is the traditiomal method used in many CSG

modeling systems designed when direct rendering from the CSG dewription was very time-

consuming. It allows rapid viewing of the object using conventional rendering engines, but

requires a BREP conversion every time the object is modified, and is therefore infeasible for

systems designed to display an object interactively during editing sesmos. The University

of Rochester's PADL-2 [Bro82J, Brown University's BAGS [Cha86, General Motor's GMSolid

[BG82], and Ricoh's DesignBase (TSUC86 systems all use BREP conversion to generate shaded

2

images.

Atherton published a CSG scan-line algorithm in (Ath83]. Scan-line algorithms display di-

rectly from the CSG description, but are slow when implemented on a conventional machine.

Scan-line algorithms can be sped up using object-parallelism. Kedem and Ellis currently are

building a parallel ray-casting machine for fast scan-line rendering (KE84]. Their machine allo-

cates one processor per node in the CSG tree. An arbitrary CSG tree with number of nodes less

than the number of hardware processors can be rendered directly; larger trees must be rendered

using multiple passes.

Depth-buffering algorithms involve generalizations of the z-buffer hidden surface algorithm.

Speed can be gained using pixel-parallelism in special-purpose hardware. Rossignac and Requicha

(RR86] published an algorithm for directly rendering CSG objects using point-classification and

z-buffering. Jansen [Jan86] published a similar algorithm specifically designed for pixel-parallel

machines like Pixel-planes. Both the rendering algorithms of Rossignac/Requicha and Jansen

are based on the original CSG. tree configuration. A number of flags (log2 n bits, where n is the

number of primitives) are needed to hold intermediate point-classification results while traversing

the tree. Our approach, first presented in [GHF86], rearranges the CSG tree before rendering,

eliminating the need for these "place-holding" bits. Okino, Kakazu, and Morimoto [OKM84]

published a paper on depth-buffering algorithms which also may employ normalization, but we

have been unable to verify this.

Naylor [TN87] demonstrated dynamically rendered images with a recent system using Binary-

Space Partitioning Trees, but their system can handle only a limited set of modifications without

incurring many seconds of delay. For example, moving a beveled hole would be time-consuming.

The algorithm we present here will render any CSG object using a constant number of bits

per pixel (< 128), in many cases more efficiently than the Requicha/Jansen approach. Our -

rendering system, based on this algorithm, displays modestly-sized CSG objects in fractions of a

second, even if the user changes the geometric structure of the CSG tree each and every frame.

Dis ributlon/

3 Avi lablilty Codes
S Avaij and/or

Dist Speclal

' - .iii.

1.2 Overview of Paper

Section 2 details the tree-normalization/rendering process first presented in [GHF861. We will

take the opportunity to correct a small error in the normalization algorithm described there. In

this section we will restrict the class of CSG objects that can be rendered to objects with convex

primitives. Later (Section 4) we will loosen this restriction. Section 3 introduces geometric

pruning, an application of bounding boxes to eliminate unnecessary subtrees. We will observe

the useful phenomenon that, although normalization tends to increase the number of nodes in

the CSG tree, pruning not only cuts the size of the tree considerably, but works most effectively

during the process of normalization. Section 4 describes an extension of the the rendering

algorithm to handle non-convex primitives. Section 5 describes our interactive modeling system

running on Pixel-planes 4 and gives statistics for the normalization/geometric pruning (NGP)

algorithm applied to various CSG objects.

2 CSG Rendering using the Normalization Method

Normalizing a CSG tree is analogous to converting a boolean expression to sum-of-products form.

A boolean expression written as a sum of products has a two-level AND/OR realization. This

enables fast combinational logic with only two gate delays (for example, see [Koh78, page 84]).

A CSG expression written as a sum of products can be rendered using two image (z and color)

buffer pairs. This enables any CSG object composed of convex primitives to be rendered in a

frame buffer with a constant number (2*ength(z buffer) + 2*length(color buffer) + 3) bits per

pixel. Figure 2 diagrams the relationship between a two-level realization in combinational logic

and the NGP method of rendering CSG images.

2.1 Boolean Representation of a CSG Tree

Any CSG tree can be represented as a boolean expression by replacing each union (U) by a sum,

each intersection (n) by a product, and each difference (-) by a product of a complement. The

4

AND OR
ztemp/ctemp J zfinal/cfinal

CL

Figure 2: Boolean Logic/CSG Rendering Analogy

primitives in a CSG tree correspond to liierals in'the boolean expression. For example, the CSG

tree ((A- B)UC)n D becomes (AB'+C)D. We will use whichever notation is more convenient.

In particular, we will define a normalized CSG tree in terms of well known boolean constructs.

Definition: A CSG tree is in normal form if its boolean representation is
in disjunctive normal form, i.e. if it is a sum of products of literals.

In addition to allowing rendering with a constant number of bits per pixel, normalizing a

CSG tree allows the rendering algorithm to be simpler than it would be otherwise. Each product

in the normalized expression can be rendered using primitive/primitive interaction rather than

subtree/subtree interaction. In Section 3 we will see that normalization also allows unnecessary

portions of the CSG tree to be recognized and pruned very easily.

2.2 The Normalization Algorithm

The normalization algorithm uses the eight basic set equivalences of Figure 3 to reduce a

CSG tree to normal form. These equivalences encapsulate the associative and distributive prop-

erties of set operations and were chosen because they represent all of the possible unnormalized

5

1. X.-(Yuz)=(X-Y)-Z
2. Xn(YuZ)=(XnY)u(XnZ)
3. X -(Y nZ)=-(X -Y) ¢J(X -Z)

4. Xn(YnZ)=(XnY)nZ

5. X-(Y-Z)=(X-Y)u(XnZ)
6. Xn(Y-Z)=(XnY)-Z

7. (XUY)-Z=(X-Z)u(Y-z)

8. (XuY)nZ=(xnz)u(Ynz)

Figure 3: Set Equivalences for Normalization

configurations at a single node. Equivalences 2,3,5,7, and 8 decompose an expression into sums,

and the remaining equivalences replace right association with left association. The normalization

algorithm can be written recursively as follows:

normalize(T:tree) :tree;
{ reduce a CSG tree to sum-of-products form }
begin

if (T=PRIMITIVE) then return(T);
else

begin
while ((T U) and ((T.right # PRIMITIVE) or (T.left = u))) do

begin
if (T # U) then apply appropriate set equivalence (1-8)

1-6 before 7 or 8;
normalize(T.left);

end;
normalize(T.right);
return(T);

end;
end normalize;

This version corrects an error in the algorithm given in [GHF86, page 1131. Figure 4 shows

*a sample CSG tree before and after normalization. The algorithm above is not the only possible

normalization algorithm, since there are many ways to convert a boolean expression to disjunctive

normal form. We have proven, however, that normalize has the following desirable properties:

6

1. It terminates given any CSG tree as input.

2. If it terminates, it will leave the CSG in normal form.

3. Each restructuring step requires only local information (node type and child node types).

4. If the initial tree contains no redundant subtrees or repeated primitives, it will not add
redundant product terms or repeated primitives within a product.

Property 3 follows directly from the set equivalences. We have developed formal proofs for

properties 1,2 and 4 [GM88], but have not included them here for lack of space.

n -/

X N11 normalization E/ \ /\ ,,.,.=./°\
SD flD

A a
A C B C

((A+B)C)-(D+E) sum of products ACDE' + BCDE
decomposition

Figure 4: CSG tree before and after normalization

2.3 Displaying a CSG Tree in Normal Form

In this section we describe how a CSG tree in normal form can be rendered using only two

z/color buffer pairs: (ztemp, ctemp) and (zfinal, cfinai). We will describe the process for convex

primitive solids now and refer the reader to Section 4 for an extension of the rendering algorithm

to non-convex solids. The basic idea is to break each product into separate ierms, render each

term into the (ztemp, ctemp) image buffer, then composite the terms into the (zfinal, cfinal)

image buffer using a standard z-buffer algorithm. A product with n primitives will contain n

terms. Rendering each term consists of rendering the surface of a primitive and paring it by the

remaining n - I primitives in the product.

In the following algorithm a primitive is complemented if the corresponding literal in the

normalized boolean expression is complemented. Zofar is a constant equal to the largest value

7

representable in either z-buffer. The front surface of a primitive refers to all of the points on the

exterior of a primitive that are visible from the eye point. In our 'case this is simply the set of

front-facing polygons. The algorithm for rendering a product is:

procedure front(Pprimitive);
{ place front surface of P into (ztemp, ciemp) }

procedure back(P:primitive);
{ place back surface of P into (ztemp, ciemp) }

procedure intersect(P:prirritive);
{ if xtemp not between front and back surfaces of P, set ziemp = zfar }

procedure subtract(P:primitive);
{ if ztemp between front and back surfaces of P, set ztemp = zfar I

procedure render(M:product);
begin

for each primitive P in M do
begin

if P is uncomplemented then front(P) else back(P);
for each primitive Q (Q 6 P) in M

if Q is uncomplemented then intersect(Q) else subtract(Q);
end;

end render;

Figure 5 illustrates the entire rendering process for the CSG tree ((A - B) U C) n D. The

photographs illustrate the contents of the temporary and final image buffers at each stage in the

rendering process.

3 Geometric Pruning

Normalization can add many primitive leaf nodes to a CSG tree; for certain trees the increase can

be dramatic (sample object I 1 in Figure 8 expanded from 42 primitives before normalization to

69120 primitives after normalization). In many such cases major subtrees in the normalized tree

will not contribute to the final image since primitives within them may not intersect. Information

about which primitives overlap provides us with "don't care" conditions similar to those used

8

ctemp cfinal

n D
I1I

/\ /\f
n B C D .

A D

(A n D-B) U (C D)

B(B)nA fD

A
D

Aa' f(D)n A- B

I) I

D

f(D)nccno D,
f(A) - front surface(A)
B(A) - back surface(A)

F(C)fnDFigure 5: Rendering a CSG ae

to minimize logic expressions. We will describe how to prune normalized trees using geometric

extent (bounding box) information derived from the geometry of the objects. We will see that

this type of pruning is much more effective than pruning done without normalization.

3.1 Bounding Boxes

The idea behind geometric pruning is to calculate a few numbers that bound the region occupied

by a CSG object. Any bounding region can be used; we choose to use bounding boxes because

of their simplicity. Only if the bounding boxes intersect do we need to compute the actual

intersection between objects. Similarly for subtraction, if the bounding box of an object to be

subtracted does not intersect the bounding box of the object from which it will be subtracted,

the subtraction does not need to be computed. Entire subtrees can be eliminated as well as

primitives, since each subtree has a bounding box derived from the subtrees below it. Other

authors have noted this as well [JS87][BMPA87].

3.2 Using Bounding Boxes to Prune a CSG Tree

To compute bounding boxes for primitive nodes, we must first transform them into a common

coordinate system; eye space is a natural choice. We then compute a bounding box for each

primitive by finding the minimum and maximum z, y, and z coordinates of the vertex set.

Min(z, y, z) and Maz(z, y, z) define the corners of a box aligned with the coordinate axes that

completely encloses the primitive.

We compute bounding boxes foi an operator node from the bounding boxes of its children

using the following rules:

1. Bounding Box(A U B) = Bounding Box(A) U Bounding Box(B)

2. Bounding Box(A n B) = Bounding Box(A) n Bounding Box(B)

3. Bounding Box(A - B) = Bounding Box(A)

Intersection and difference nodes can potentially be pruned. If the operator is n, we compare

Min(z, y, z) with Max(z, y, z). If the minimum in any coordinate exceeds the maximum, the

10

BBOX:
n .Min(-1, 0, -2),

Ma(1, -1, 4)

SBBOX
geometric pruning

/ Min(-1. 0. -2). / Min(-2. -5, -3),

Max(1, 2, 4) /\ Max(1, -1, 6)

left subtree right subtree

Figure 6: Pruning an intersection node

bounding box describes a null volume and we prune the subtree A n B. If the operator is -,

we compare Bounding Box(A) with Bounding Box(B). If they do not intersect, we replace the

subtree A - B with A. We can prune subtrees that do not intersect the viewing frustum as well.

Figure 6 illustrates pruning an intersection node.

3.3 Places to Prune

There are several places in the display process where we can prune a CSG tree:

" before normalization (with primitives transformed to eye space).

" after normalization.

" during normalization.

Pruning after and during normalization will produce the same results; pruning before nor-

malization will not. Each location has advantages and disadvantages. While an unnormalized

tree, in general, contains fewer nodes than a normalized tree, the CSG tree designer is not likely

to include nodes that do not contribute to the final image. We have found pruning at this stage

to be ineffective on all of the CSG data sets we have rendered (see Figure 8).

11

Normalization, even though tending to increase the number of tree nodes, separates large

subtrees (with large bounding boxes) into a set of product terms (generally with smaller bounding

boxes). This makes pruning very effective on normalized trees, in some cases reducing the number

of primitive leaf nodes by two orders of magnitude. Geometric pruning reduced the number of

primitives from 69120 to 96 in sample object 11 of Figure 8.

An even more effective approach is to prune the tree before it ever reaches its maximum

size. We can do this by pruning during normalization rather than after. This distinguishes

the normalization/geometric pruning (NGP) algorithm from previously-published bounding-box

algorithms.

3.4 Dynamic Geometric Pruning

The heart of the NGP algorithm is to prune the CSG tree at certain key points during normal-

ization, thereby restricting the growth of the normalized tree before it ever gets large. In order to

recognize null subtrees as early as possible, we add one more set equivalence to the normalization

algorithm:

6.5 X-YnZ=XnZ-Y

This transformation forces intersections to the left in products. Since intersection can reduce

the size of bounding boxes, but subtraction and union cannot, this allows subtracted subtrees

to be pruned that might not be pruned otherwise. It also allows null subtrees to be detected as

early as possible, rather than having the normalization algorithm manipulate them many times

before pruning.

We compute new bounding boxes after applying each set equivalence and after normalizing

a left or right child. Pruning depends only on local information (at most the bounding boxes of

two nodes), and is therefore very fast.

12

3.5 Difference Pruning

The rendering algorithm described in Section 2 requires that each primitive in a product be

pruned by the remaining primitives in the product. Consider the example in Figure 7 in which

B and C interact with A, but not with each other. The three terms that need to be rendered

into the temporary buffer are:A

Figure 7: Difference Pruning

1. Front(A) - B - C

2. Back(B) n A - C
3. Back(C) n A - B

In term 2, primitive C cannot pare anything from primitive B, so primitive C can be eliminated

from the term. Similarly, primitive B can be eliminated from term 3. This produces the simpler

expression:

1. Front(A) - B - C

2. Back(B) n A
3. Back(C) n A

We check for such occurrences by comparing the bounding boxes of each primitive in a product

with the bounding boxes of each of the others. We store the results of these comparisons in a

13

matrix, whose rows and columns are indexed by the order of primitives in the product. An entry

of 1 at position (i, j) means that the bounding boxes of primitives i and j intersect, and that

we must pare primitive i with primitive j as usual. An entry of 0 means that a subtraction

primitive j can be skipped when rendering primitive i. Since paring one primitive with another

requires comparison with both front and back faces of a primitive, difference pruning results in

a significant speedup for product terms with disjoint subtraction primitives.

We have shown that geometric pruning and difference pruning can result in significant savings

when rendering. Section 5 analyzes and presents data on the effectiveness of these pruning

algorithms.

4 Rendering Non-Convex Primitives

We say that a solid is k-consez if a ray intersecting the solid can enter and exit -it at most k

times. A 1-convex solid is convex in the usual sense and 2-convex solids include primitives such

as the torus and the helix primitive (Le. one turn of a coil spring).

To be able to render a k-convex primitive, it boundary surface must be divided into entirely

front and back-facing subsurfaces. Planar polygons satisfy this condition. We assume primitives

are tiled with polygons in the algorithm below.

The front and back routines now must send the polygons of a k-convex primitive to the frame

buffer k times. In each pass we retain a portion of the primitive's surface, perform inside/outside

classification with respect to the other primitives in the product term, and then composite what

remains into the final image buffer. We use a small buffer (of size log 2 k) called count in the

frame buffer to ensure that all potentially-visible points on the primitive are captured in at least

one of the passes. If a surface point is captured more than once no harm will be done. The

following two algorithms are called within loops inside front and back, respectively, and perform

one front or back-surface pass:

procedure front.pass(P: k-convex primitive, a: integer);
(called by front k times for uncomplemented k-convex primitives }

14

beoin
.count 0;
for each front-facing polygon of P do

for each pixel in polygon do
begin

count = count + 1;
if count = n

store polygon z in ztemp and store polygon color in ctemp
end;

end frontpass;

procedure back.pass(P: k-convex primitive, n: integer);
{ same as front.pass, but for complemented k-convex primitives }

A 1-bit parity flag at each pixel is used to perform inside/outside classification with respect

to a k-convex primitive.

procedure in.out-classify(P: k-convex primitive);
{ toggle parity each time a surface is encountered with z < ztemp }
begin

parity = 0;
for each polygon of P do

for each pixel in polygon do
if z of polygon < ztemp then toggle parity

end in.out-classify;

procedure intersect(P: k-convex primitive);
{ pare a term using an uncomplemented k-convex primitive }
begin

i.outclassify(P);
for each pixel do

if parity = 0 then ztemp = zfar;
end intersect;

procedure subtract(P: k-convex primitive);
(pare a term using a complemented k-convex primitive }
begin

in.out.classify(P);
for each pixel do

if parity = 1 then ztemp - zf ar;
end subtract;

15

The procedures front.pass and back-pass are called k times from the procedures front and

&ack of Section 2.3. Intersect and subtract replace the corresponding routines in that section.

These routines allow 1-convex and k-convex primitives to be rendered simultaneously without

sacrificing any of the speed of the 1-convex algorithm.

5 Performance and Implementation Results

In this section we compare the performance of the NGP algorithm with competitive algorithms

and present statistics taken from our modeling system. We restrict our analysis to depth-buffering

algorithms for pixel-parallel architectures, noting that algorithms and architectures that exploit

object parallelism, such as Kedem and Ellis' Ray Casting Machine [KE84], also have the potential

for real-time CSG rendering.

5.1 Time Complexity

Two classes of depth-buffering algorithms for pixel-parallel architectures have been proposed:

those which render from the original CSG tree (Rossignac/Requicha (RRS6] and Jansen [Jan86])

and those which restructure the CSG tree before rendering (the NGP algorithm).

A convenient metric for comparing depth-buffering algorithms is the number of times a front

or back surface of a primitive needs to be sent to the frame buffer for a particular image. In

a pixel-parallel machine, the various pixel-oriented "bookkeeping" operations are very fast. We

will ignore them in our analysis.

Both the Rossignac/Requicha and Jansen algorithms require sending either the front or back

surface of each primitive, then performing an in/out classification [Til80 with respect to all the

other primitives in the tree. For a tree with n primitives, this results in a time complexity of

n(2(n - 1)) or O(n 2). This is confirmed in [RR86, page 371.

In calculating the time complexity of the NGP algorithm we will ignore the time required to

normalize and prune the tree, since we have found this to be negligible for all of the objects we

have rendered. Assuming that the normalized tree has j products, each of length k, the time

16

complexity for the NGP algorithm is jk(2(k - 1)) = 2jk(k - 1). The relationship between j

and k varies depending on an object's CSG expression and the primitive geometries. Thus the

algorithm's overall time complexity depends on the structure of the tree as well as the number of

primitives. Pathological objects will always exist for which the NGP algorithm's time complexity

explodes. Nevertheless, its performance on actual objects seems to be very good. From the

limited data we have taken, it appears to perform somewhere between O(n) and O(n2).

5.2 Actual Performance on Sample Data sets

We have obtained CSG data sets from a number of sources and local students have used our

interactive modeler to design a number of their own. Figure 8 gives statistics and rendering times

for 11 objects ranging from 11 to 180 primitives. The table illustrates how small the average

length of each product term (k) is after pruning (between 2 and 8). With k-values so small

and relatively independent of the number of primitives the NGP algorithm's time complexity

approaches O(n).

5.3 Implementation Results

We have incorporated these algorithms into an interactive CSG modeler. The modeler displays a

smooth-shaded, hidden-surface-removed image of the objects in the Pixel-planes 4 monitor. The

user interface runs on the host DEC VaxStation II/GPX running Ultrix 2.2 using X-windows. It

allows one to manipulate both the geometric descriptions of primitives and the structure of the

CSG tree.

Figure 9 shows the Pixel-Planes 4 monitor and the user interface screen of our modeling

system. The user can modify the CSG tree by dragging icons and can alter the sizes and

positions of primitives and subtrees using joysticks [DM87]. Changes are displayed on the Pixel-

planes 4 monitor in fractions of a second for objects between 20 and 50 primitives. Figure 10

'Note to readers of draft 1/11/88: We have recently received a number of large CSG data sets from the University
of Rochester and IBM. We have not yet had time to convert them to our format, but will include data and images
from them in future drafts of this paper and on the accompanying videotape.

17

Object Oescripton Number of primitives Pnmidve fa sent
to frame buffer Average

No Part Name Source use after norm trie after w/out d1ff with diff product Rendering
tree pruning pruning pruning pruni ength time

(k)
I. Tube (OKMI4] 11 11 15 15 75 75 3.5 0.185 sec
2. CuTube [OKM84J 12 12 20 20 140 136 4.4 0.235

3. 1110 OKM64] 23 23 30 30 1SO 1S0 3.5 0.138

4. Tie,,d OR! 19 1s 10 Is 127 11 3.4 0.142

5. Phone Ruy Dow 32 32 62 31 0652 456 8.4 0.110
a. Ln Brice Town1 15 15 16 Is 32 32 2.0 0.225

7. Die GeTu 44 44 44 44 360 252 3.9 4.020

S. 111 D Banks 43 43 43 43 711 456 6.3 3.430

. Ste Uto i Mnr 29 28 297 184 2252 2036 7.2 0.711
10 Truck 0811 10 180 10 100 352 352 2.0 2.770

I Tie Rod - Me88ove) 42 42 69120 96 1152 926 5.6 0.592
1

US Army Sdvo R Lratory
Inspired cover of Godel. Eier:. Bach by Douga Hoftadter

Figure 8: Rendering times and statistics

Figure 9:- Pixs 4. m r a

-U 3 - , -, -lt ,+

Ll -

F ' --- . -. / . .*

Figure 9: Pixel-Planes 4 monitor and modeler interface screen

18

shows images and rendering times for a number of the objects described in the table of Figure 8.

Pixel-planes 4's front-end processor is a single fast-floating point processor based on the

Weitek floating point chip set. We have found this to be the bottleneck in our system. The

majority of the CSG objects we have rendered use only approximately ten percent of Pixel-

planes 4's frame buffer cycles. This makes us believe that the NGP algorithm may perform

better on systems with more front-end processing power, in particular, high-performance graphics

workstations with large-grain parallelism among front-end processors.

5.4 Future Extensions

We intend to increase the speed of our renderer in two ways: 1) We can increase the power of

our front-end processor. The NGP algorithm adapts well to the large-grain MIMD front-end

paradigm. Jansen in [JS871 describes an algorithm for a multi-processor system that divides the

frame buffer into multiple regions, allocating a processor per region. Each processor maintains

its own version of the CSG tree and prunes it using its particular viewing frustum as a bounding

box. We intend to implement this algorithm on Pixel-planes 5 (currently under development).

2) Also we can use the quadratic expression evaluator of Pixel-planes 5 to render primitives with

quadratic surfaces. This will allow us to render primitives with curved surfaces rapidly.

We also plan to enhance the pruning algorithm and make it less view-dependent using tighter

bounding boxes. We intend to replace bounding boxes with Kay and Kajiya's bounding regions

[KK86].

6 Conclusion

We have presented a set of algorithms for efficiently rendering CSG-described objects directly

into a frame buffer without first converting to a boundary representation. Unlike other depth-

buffering CSG algorithms, the NGP algorithm requires only a constant number of bits per

pixel (two image buffers plus three flag bits) to render objects with convex primitives. It also

can take advantage of pixel-parallelism available in the new generation of high-performance

19

Fig 10a: Phone (0.110 sec) Fig l0b. Lamp (0.225 sac)

IVI
,, <.8

Fig 10c: Die (4.020 sec) Fig 10d: Meal (3.430 sec)

Fig 10e. GEB (0.711 sec) Fig 10f: Thick (2.770 sec)

Figure 10: Images generated on Pixel-planes 4 solid modeler

graphics workstations such as the ATT Pixel Machine and the forthcoming Stellar graphics

workstation. Although the NGP algorithm has a worst-case time complexity much worse than

other algorithms' O(n2), on all of the trees we have encountered, its time complexity compares

favorably. We have incorporated the NGP algorithm into an interactive CSG modeling system

that has proven very successful. It renders shaded images of substantial objects in a fractions

of a second. This "what you see is what you get" (wysiwyg) approach to solid modeling has

attracted students outside of the Pixel-planes group, several of whom have designed substantial

CSG objects with very little instruction.

References
lAth83] Peter R. Atherton. A scan-line hidden surface removal procedure for constructive

solid geometry. Computer Graphics (Proceedings of SIGGRAPH '83), 17(3):73-82,
1983.

[BG82] John W. Boyse and Jack E. Gilchrist. Gmsolid: interactive modeling for design and
analysis of solids. IEEE Computer Graphics and Applications, 2(2):27-40, March
1982.

[BMPA87] Kadi Bouatouch, M. 0. Madani, Thierry Priol, and Bruno Arnaldi. A new algorithm
of space tracing using a csg model. Proceedings Eurographics '87, Elseviers Science
Pub., 65-77, 1987.

[Bro82] C. M. Brown. Padl-2: a technical summary. IEEE Computer Graphics and Applica-
tions, 2(2):69-84, March 1982.

(Cha86] Edward Chang. Brown animation generation system (bags). June 1986. Computer
Graphics Group, Department of Computer Science, Brown University.

[DM87] Clare Durand and Steven Molnar. Csg user's manual. February 1987. Computer
Science Dept., University of North Carolina at Chapel Hill.

[For86] A. R. Forrest. User interfaces for three-dimensional geometric rnodeliiag. Proceedings
of Chapel Hill Workshop on Interactive 3D Graphics, 6, 1986.

[GHF86] Jack Goldfeather, Jeff P.M. Hultquist, and Henry Facis. Fast constructive solid ge-
ometry display in the pixel-powers graphics system. Computer Graphics (Proceedings
of SIGGRAPH '&6), 20(4):107-116, 1986.

[GM88] Jack Goldfeather and Steven Molnar. Csg tree restructuring. January 1988. Techni-
cal Report (forthcoming): Computer Science Dept., University of North Carolina at
Chapel Hill.

(Jan86] F. W. Jansen. A pixel-parallel hidden surface algorithm for constructive solid geom-
etry. Proceedings Eurographics '86, Elseviers Science Publ., 29-40, 1986.

21

fJS87] F. W. Jansen and R. J. Sutherland. Display of solid models with a multi-processor

system. Proceedings Eurographics '87, Elseviers Science Pubi., 377-387, 1987.

KE84] Gershon Kedem and J. L. Ellis. Computer structures for curve-solid classification
in geometric modeling. 1984. Technical Report TR84-37, Microelectronic Center of
North Carolina, Research Triangle Park, N.C.

[KK861 Timothy L. Kay and James T. Kajiya. Ray tracing complex scenes. Computer
Graphics (Proceedings of SIGGRAPH '86), 20(4):269-278, 1986.

[Koh78 Zvi Kohavi. Switching and Finite Automata Theory. Tata McGraw-Hill Publishing
Co. Ltd., New Delhi, 1978.

[OKM84] N. Okino, Y. Kakazu, and M. Morimoto. Extended depth buffer algorithms for hidden
surface visualization. IEEE Computer Graphics and Applications, 4(5):79-88, May
1984.

[RR86] J. R. Rossignac and A. A. G. Requicha. Depth buffering display techniques for
constructive solid geometry. IEEE Computer Graphics and Applications, 6(9):29-39,
September 1986.

[Ti80] R. B. Tilove. Set membership classification: a unified approach to geometric in-
tersection problems. IEEE Transactions on Computers, C-29(10):874-883, October
1980.

[TN87] William C. Thibault and Bruce F. Naylor. Set operations on polyhedra using bi-
nary space partitioning trees. Computer Graphics (Proceedings of SIGGRAPH '87),
21(4):153-162, 1987.

[TSUC861 Hiroshi Toriya, Toshiaki Satoh, Kenji Ueda, and Hiroakl Chiyokura. Undo and redo
operations for solid modeling. IEEE Computer Graphics and Applications, 6(4):35-
42, April 1986.

22

